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Nonlinear Time-Domain Analysis of Injection-
Locked Microwave MESFET Oscillators
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Abstract—In this paper, injection-locked MESFET oscillators
are analyzed using several numerical models. The injection- L, @
locking behavior of the van der Pol equation and of a more \A
complex representation using the Curtice—Cubic MESFET model

are investigated. Analysis and experimental results are compared

for an NE71083 transistor oscillator operating at 0.5 GHz. The @
deficiencies of using a van der Pol oscillator model are pointed

out. Time-domain results from the complex model exhibiting mul-

ticycle and apparently chaotic behaviors are also examined, and

point to problems with common nonlinear simulation techniques

for these circuits.

Index Terms—Chaos, injection-locking, nonlinear modeling,
transistor oscillator.

Fig. 1. Source-load oscillator topology with the circuit nodes numbered.

Node 2 is the source of the transistor, which is coupled to a tank circuit and

|. INTRODUCTION drive voltage.

HE USE of linear models to predict oscillator behavior
suffers from many limitations, which make it difficultthe Volterra series method [12]. In both of these, the cal-
to accurately predict operating frequency and power. As &ulations are performed in the frequency domain, assuming
tempts are made to improve oscillator performance by settifgnstant or slowly varying amplitudes, and the results are then
Operating points farther into nonlinear regimeS, the abili nverted back into the time domain. The van der Pol equation
to model these effects becomes critical, since saturation d&g] has also been used to model time-domain characteristics
influence frequency of operation, power output, and efficiend}f coupled microwave oscillators, but there has been little work
Designing better oscillators requires a more complete undéf time-domain modeling of injection-locked oscillators using
standing of how the nonlinear aspects of the oscillator affé®ore realistic models.
its operation. In this paper, results from two numerical models are
In addition, interest in nonlinear coupling behavior hagompared—the van der Pol oscillator equation and a more
increased due to the recent advances in free_space pomistic representation USing a more Complicated tranSiStor
combining [1]-[8] and phase-shifterless beam scanning [g]!odel—with experimental results. While this particular
[10] Because these types Of Combiners invo've a |arge nuﬁpalysis uses the Curtice—CubiC tranSiStor mOdel, |t can be
ber of Coup|ed Osci”atorsy an understanding of the Coup|i®(tended to a wide Variety of other nonlinear transistor models.
mechanisms is critical to improving the phase noise, tuninghe implications of the authors’ time-domain analysis on
and locking ability. traditional microwave oscillator modeling and design are also
As a starting point for understanding coupling behavior ifixamined.
microwave oscillators, the authors have chosen to examine the

source—load oscillator topology, shown in Fig. 1. This topol- II. NUMERICAL METHODOLOGY FORANALYSIS
ogy is simple enough that the analysis does not depend upon OF INJECTION-LOCKED OSCILLATOR MODELS
too many components, but is still complex enough to show the . . .
One common way of characterizing dynamic behavior of

different behaviors common in microwave oscillators. . 7 .
. . . nonlinear systems is the parametric sweep, where several
In the past, the primary approaches to nonlinear oscillator . .
. . : . system parameters are varied and the behavior of the re-
modeling have been harmonic-balance simulations [11] and... ; ; .
sulting system is examined [14] and typically presented as a
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Fig. 2. Experimental setup used for testing the authors’ model. Slight modification from the circuit in Fig. 1 allows the circuit to be tested dsiry stan
microwave equipment. The sweeper is used as the injection-locking source.

system is locked to a drive signal is to perform a Poiécar TABLE |
section [15] of the state variables with respect to that signal. CoMPONENT VALUES FOR MEASURED CIRCUIT
If the points of the Poincér section repeat with a periad '
then the oscillator is locked as ancycle to the drive signal. L, = 60nl

The number of state variables depends on the complexity of L, = 30nH
the model. Since, in modeling injection-locked oscillators, the Ly = 151nH
important feature is how the output responds to the locking Camaz = 20pF

signal, the output voltage and its derivative are chosen as
the state variables to be examined. In addition, the Pdéncar
section is taken every time the drive voltage crosses 0 V goifighdes which might be chaotic are not necessary for the
from negative to positive. This usually occurs between tweyrposes here.

simulation points, so linear interpolation is used to estimate

the precise location of the sectioned points. IIl. EXPERIMENTAL RESULTS

Because the steady-state dynamics of the oscillator are Wha{_h illator circuit i load illator circuit built
is of interest in this sweep, the simulation must continue lon edofr? aNOEr7C1'r(;:;3' II\S/ISSSISEEIE:e_ O? osctiia otr (c:jlr?uclj E[J'
enough to allow the initial transient response to sufficient ound the . " 1, surtace-mounted inductors,
variable capacitors. This circuit is tested using the setup

decay before sectioning begins. The necessary delay stron L !
depends on the system being studied. wn in Fig. 2. The component values used are shown in

Once the transient response has decayed, the location of-[f'ill le 1.

sectioned point is compared with the three previous sectionedt he t:;a;smg 'Sf trr:rO\tnded' tthrougr; Itlémped md.uctors o ttr:jet
points using an averaged, norm [16]. The step for those gate and drain ot fn€ fransistor, and the Source IS connected o

previous sectioned points is equal to the number of tI%ound by a lumped inductor and a variable capacitor (which

periodicity being checked, so that the error foriazycle test provides some tuning ability). For the source load, a coaxial
at thenth sectioning is ' connection to a 3-dB power splitter allows both the sweeper

and the spectrum analyzer to be connected to the circuit. The

1 ) 4 sweeper is the injection-locking source for the circuit, and
n o __ n n—u 2 A 22 N —1 2 . -
e (Vout = Vo)™ + (90w = Pout) the analyzer is used to examine the output waveforms. The
N e 2in 2 o o 2in 2 circuit was bif':\sed aVD_S_; =3V a_nd Ips = 35 mA, which is
+ (Uout — Yout ) + (Uout ~ Vout ) roughly the bias condition at which the manufacturer’'s model
5 512 data had been taken. The free-running oscillation was at 0.45
n n—3: -n ~n—37 . .
+ (vou = vowr )+ (Toue = Vou ) GHz with an amplitude of 0.1 mV.

The results of the experimental sweep of the injection-
where [, is the voltage across the tank circuit at thth locking parameters are shown in Fig. 3. The primary features
sectioning and the dots over the variables represent derivatieéghis sweep are a main lobe, shown in black in the figure,
with respect to time. where the oscillator locks with period one. This main lobe is

This error is accumulated and then averaged to give the ersignificantly asymmetric. In addition, there is another lobe for
per section for each periodicity. A discrimination level of 0.0higher drive frequencies and amplitudes, which demonstrates
is chosen to signify a locked condition. This paper’s investigéscking with a variety of different periods.
tion is limited to discriminating oscillations with periodicity of Output spectra for some injected signals show the type of
1 through 7. The authors’ feel that investigating higher pericsibharmonics expected from multicycle oscillators; they also
oscillations would do little to further understanding of systershow the broad spectra that are often seen in chaotic systems,
dynamics and enable improvements in design techniques,asocan be seen in Figs. 4 and 5, respectively. The apparently
that the added time and storage requirements that classifyafmotic spectra are seen in a variety of locations, especially
larger periodicities would have entailed are not appropriatewhere there are transitions from unlocked to locked states.

In addition, as discussed below in Section VI, it is difficulThe implications of the existence of multicycle and chaotic
to truly establish the presence of chaotic signals. The largscillations are discussed in the section below on time-domain
additional computational demands of automatically discernimgsults.
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Fig. 3. Experimental sweep results. The free-running oscillation had an amplitude of 0.1 mV. The horizontal axis is the injection-locking digrad.amp
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Fig. 4. Measured spectrum showing subharmonics indicative of multicydiég. 5. Measured spectrum showing what is believed to be chaotic behavior.
(six-cycle) behavior. The injection signal is 0.9 V at 350 MHz. The injection signal is 2.2 V at 550 MHz.
IV. VAN DER POL OSCILLATOR MODEL lengthening the simulation and allowing the error to increase

The van der Pol oscillator equation [17] is widely used tto be above the cutoff point.
model nonlinear oscillator behavior. While this equation does The main problem with these results is that the lobe of
not physically model the dynamics of MESFET oscillatorgnulticycle behavior seen in the experimental results does not
it is often used as a general model for the output voltage @ppear in this model; moreover, the main lobe does not reflect

these circuits. the asymmetry of the experimental results.
For this paper, the authors used a generalized form of thdt was expected that the van der Pol results would sig-
equation, specifically nificantly differ from the experimental results, because the
P dv assumption that the MESFET can be treated as a negative
o (a — /3112)% — wiv + Acos(wgt +¢). (1) resistance (as is roughly done for the van der Pol equation) is

) not accurate for MESFET oscillators in general. This equation
The equation parameters are chosen taxbe 1.0, 5 = 50, 4dequately models some forms of common-source geometries,
andwo = 3.45. The swept parameters areandwq. These \yhere the gate—drain capacitances are high enough to cause
choices make the free-running characteristics of the oscillajpg gate—drain voltage to tend to be zero. The approximation
model comparable to those from both the circuit describ@_g much less appropriate for other topologies, where the
above and the more complex model presented later. Equatigihacitances are much smaller between the two ports. In the
(1) is implemented in Fortran and numerically solved using,ce_|oad geometry, the reduction to a nonlinear negative
an adaptive fourth-order Runge-Kutta ordinary differentiafggjstance is too much of a simplification, as it does not take

equation solver [18]. _ into account the nonlinear reactance.
The results of the sweep are shown in the parameter-space

portrait in Fig. 6. There is a single, roughly symmetric lobe
of one-cycle behavior and a few scattered areas of multicycle
behavior. As these are all isolated points, it is believed thatTo model the circuit more realistically requires a more
they represent spurious behavior that would be eliminated Agcurate nonlinear transistor model. Because of its wide-

V. SOURCE-LOAD OSCILLATOR MODEL



DIXON et al: NONLINEAR TIME-DOMAIN ANALYSIS 1053

0.80

One Cycle
Two Cycle
Three Cycle
Four Cycle
Five Cycle
Six Cycle
Seven Cycle

0.68 -

®REBE2N=

Frequency (GHz)
o
[4,]
w

0.43 A

0.30

Drive Voltage (V)

Fig. 6. Van der Pol locking sweep. The free-running peak-to-peak amplitude of the oscillation is 0.568 V.

spread use and the availability of model parameters, thecond-order differential terms from each other results in the
Curtice—Cubic model [19] is employed for the drain—sourdellowing set of equations:

current of the MESFET. The gate-source and gate—drain k1 (f + Cuah)

junctions are modeled by voltage-dependent capacitances in il = ——— 82

parallel with voltage-dependent resistances. This transistor c k2

model is inserted into the topology of Fig. 1, and nodal — —gd(f+0gdh’) + A

current analysis is used to derive a set of three coupled k2

differential/integral equations, the solutions of which are the tig = L(f +g+h) (3)
voltages at the three nodes in Fig. 1. Ca

In order to avoid singularities in later mathematical mayhere
nipulation, the voltage differences;, 1., and uz, defined

by ky = Cga+ Cys
]{;2 = Cgs ng + Cds ng + Cgs Cds
Uy = v1 — U2 ’ h
h=—.
U2 = VU3 — V2 kl
—Uz = Vs — V3, Equation (3) is implemented in Fortran using the same adap-

_ _ _ _ _tive Runge—Kutta solver and parameter sweep program men-

are substituted into these coupled equations. leferentlatlﬂgned above
the nodal equations with respect to time and grouping like g e simulations, parameter values were chosen to match
terms together yields the following system of second-ordgfs \E71083 MESFET, as shown in Table II. The tank circuit
differential equations: parameters ar®, = 50 2, C4 = 30 pF, andL4 = 15 nH,
.. .. and the external inductors aflg = 60 nH and L, = 25 nH.
C, Cys) — 2Chq = . . .

1%'1( &l +.. as) “2ed ! The biases ar&y, = 2.9 V and V,, = —0.1 V, which gives
—i1Cas — tipCgs +ii3Ca = g conditions very close to those where the Curtice—Cubic model
—1i1Cga + 12(Cga + Cas) = h (2) was made. With these choices, the free-running oscillation

is about 500 MHz, which is within 16% of the free-running
where the dots above variables indicate derivatives with fgequency of the physical circuit.

spect to time, andf, g, andh are defined by This circuit is simulated at 682 different combinations of
) 1 injection frequency and magnitude, with a precision level of
J==1s— L—(ul + uz + vs — vq) 1077, to an end time of 160 ns. The sectioning starts after
. L . . . 40 ns to allow the initial transients to settle. The entire sweep
~ (Cad + Gga) (1 — i) — ng(“} - Tf?) takes approximately 170 h of computing time on HP-700 series
_j : . . Uz —va U3 workstations.
9= las + (C + G e + Gz Ry Ly The results from the simulation are shown in Fig. 7.

1 - . . Whereas the behavior of the van der Pol model was too

h= _L_Q(UIQ 3 +5) = (Cga + Gga) (2 = ) simple, the Curtice—Cubic behavior appears to be somewhat

— ng(uQ —up) — (Cgs + Ggs)fm — nguQ_ too complex. The main lobe shows the same asymmetry seen

in the experiment, and the plot also shows the type of higher

Using standard linear algebraic techniques on the coeffieriod orbits which appear in the experiment. Two other lobes
cients of the left-hand side (LHS) in order to separate ttedso appear. These, together with the main lobe, correspond
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Fig. 7. Curtice model injection locking sweep. The free-running peak-to-peak amplitude of the oscillation is 0.449 V.

TABLE 1
CuRrTICE-CUBIC MODEL PARAMETERS FOR THENE710 %RIES, AS
PROVIDED BY THE MANUFACTURER. THE MODEL PARAMETERS ARE
BASED ON MEASUREMENTS AT Vg, = 3 V AND I3, = 30 MA

shift with increased drive voltage. In the region where the drive
voltage is between 1.0 and 1.75 V and the drive frequency is
between 0.40 and 0.48 GHz, the behavior is seen to be quite
erratic, with many different locking modes present. This is

Cos0 = 0.45pF typical of regions where chaotic behavior might be present.
Coa0 = 0.1pF Based on the experimental results, chaotic behavior is expected
v = 0.6516V to be present along the Iogking boundari_es, but experiments

v = 163V were not performed to confirm or deny this expectation.

= —~1
io N 8'?32;;{_1 VI. TIME-DOMAIN RESULTS
‘A: — 0.0619 V- As described in the previous section, the Curtice—Cubic
. model describes much of the actual steady-state dynamics of

As = 000383V the locked system. The next stage of the model verification

B = 0047V~ process is to examine results in the time domain for a selection
Vgsp = 2.72V of injected signals that show interesting and representative
Cys = 0.135pF behavior.

I, = 7.31x1072A At the first such parameter-space setting (0.54 GHz, 1.0 V),
o, 0.03146 V the signal converges to a period-one limit cycle, as shown

in Figs. 8-10. When the frequency is raised to 0.73 GHz,
this one-cycle bifurcates to a three-cycle. Figs. 11-13 show

o _ these results. The frequency spectrum in Fig. 13 is similar
to three separate areas where the injection amplitude §8dinat shown experimentally in Fig. 4 with respect to the

frequency combine to cause locking behavior. In additioRsominent subharmonics, although with a different periodicity.
there are a number of other isolated areas that show Sofi thickness of the lines in Fig. 12 indicates that the system

degree of locking. . has not completely settled, and could be eliminated if the
The primary lobe is fairly narrow and consists of one-cyclgimulation time was increased significantly.

oscillations. This is the most commonly used injection-locking |f, on the other hand, the frequency is lowered to 0.46
regime, because the oscillator will lock completely to th&Hz and the amplitude is raised to 1.4 V, the behavior
injected signal. The upper secondary lobe shows locking jg@sapparently chaotic, as seen in Figs. 14-16. The results
a three-cycle oscillator, with bifurcations at higher injectiofn Figs. 14-16 can only tentatively be classified as chaos
amplitudes to six-cycle oscillations (e.g., near 0.68 GHz amgcause there is no reasonable wayptove the existence
0.75 or 1.75 V). Further bifurcations to 12-cycle oscillationgf chaos in a system of this complexity. That chaos should
probably exist, but the authors’ program does not identitye present is expected as an extension of [20], but that
these. This upper lobe, at low drive levels, starts at a frpaper only strictly applies to one-dimensional (1-D) discrete
quency of about 3/2 the free-running frequency and decreasesppings. For more complicated systems, methods like those
in frequency as the drive voltage is increased. The lowef Melnikov [21], [22] can sometimes be used, but these are
secondary lobe initially looks quite similar to the main lobehased on formally establishing the presence of horseshoes
but bifurcates to two-cycle oscillation as the drive voltagéstretching and folding) in the phase-space flow, a difficult
increases. This lobe is at roughly 2/3 of the free-runnirigsk in high-dimensional systems, and an all-but-impossible
frequency; unlike the upper lobe, it does not show a frequenoge in experimental systems.
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Fig. 10. One-cycle oscillation frequency domain. This again uses the same

parameters as in Fig. 8. The noise floor is due to discretization noise in the
fast Fourier transform (FFT). Fig. 13. Three-cycle oscillation frequency domain. The parameters are again

as in Fig. 11. The noise floor is roughly the same as Fig. 10. The power in
the fundamental frequency is much less than seen in Fig. 10.

As is apparent in Fig. 15, the phase-space attractor exhibits

some fractal struc;uré.Flr?. 1?’ viewed in c.ompl).aknson 0 The results shown here have several important implications,
Fhlgs: 10| and 13, s ows t Z classic broad ?O'Sﬁ" © Spectryyy for techniques to be used in detecting these effects in labo-
thatis also common in—and symptomatic of—chaotic SySteMy,ry measurements and for the validity of assumptions made
[23], and which is similar to the experimental results in Fig. 3, other modeling methods. The presence of the subharmonics

of multicycles and the frequency spreading for the apparently

1That is, it resembles a Cantor set in cross section. chaotic oscillations in Figs. 13 and 16 provides a straightfor-
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since more power is lost to frequencies other than the locking
frequency. This means that single-cycle oscillators should be
used when the object is to maximize the power at the injected
frequency. It is not presently clear whether the presence of
these subharmonics can be exploited in some useful manner.

The significant subharmonics seen in Figs. 4 and 13 and the
broad spectra of Figs. 5 and 16, challenge the assumption that
the amplitude of the signal is varying slowly with respect to
the carrier frequency. This calls into question whether forms
of nonlinear analysis which use this assumption, as in [4], can
accurately model the dynamics of transistor oscillators. These
frequency characteristics also cause problems for technigues
that employ a finite sum of frequency components, such as har-
monic balance and Volterra series analysis. The subharmonics
flom the oscillators would require the use of subharmonics
in these analyses, but there is no way to kreyriori what
periodicity to expect. The broad spectrum of the chaotic signal
would require an infinite number of frequencies to be properly
simulated, so any of these methods would fail.

VII. CONCLUSION

A time-domain analysis of injection-locked microwave tran-
sistor oscillators using a nonlinear device model is presented.
The results are compared to an analysis using a simpler van
der Pol oscillator model and to an experimental model. It is
concluded that the van der Pol model does not accurately
characterize a general microwave transistor oscillator, since
it does not take into account the nonlinear reactive part of

Fig. 15. Apparent chaotic oscillation, Poinéasection. The injected signal the device impedance, but treats the transistor as a nonlinear

is the same as for Fig. 14. The fractal (Cantor set) characteristics of the secﬁggative resistance. However. it is possible to choose the
strongly suggests the system is chaotic. ' ’
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1 1
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circuit elements and oscillator topology such that the van der
Pol model will model certain oscillator behaviors. The analysis
using a Curtice—Cubic transistor model qualitatively predicts
the behavior of a 0.5-GHz experimental model.

Injection-locked oscillators are analyzed by using the
Poincaé section in an automated numerical procedure. It
is shown that commonly used nonlinear dynamics techniques,
such as the phase-space portrait, can provide a useful tool for
understanding microwave oscillators.

The van der Pol and Curtice—Cubic models give signifi-
cantly different results when the injection-locked frequency
is plotted against injection-locking signal power. The van der
Pol model yields a symmetrical plot around the free-running
frequency, which is shown not to be the case in realistic
experimental oscillators. The asymmetries in the injection-

Fig. 16. Apparent chaotic oscillation frequency domain. The injected signCKing plane are better predicted using a nonlinear transistor
is as in Fig. 14. The spectrum is spread much rougher, and has a higheodel.

background level than Figs. 10 and 13. This is a feature common in chaoticBoth numerical and experimental results are presented

systems.

showing multicycle behavior, as well as what is believed to be
chaotic behavior, in a very simple microwave oscillator. These

ward method for detecting these behaviors using a spectrbghaviors can be identified by the subharmonics or spectral
analyzer. Direct detection of these types of oscillations in th#oadness seen in spectrum plots. The existence of such
time domain is difficult at microwave frequencies.

The frequency-domain plots show that the power at thechniques, which assume a finite number of harmonics or
locking frequency is significantly decreased when the circistowly varying time-domain amplitudes and phases. This can
is operating in multicycle and apparently chaotic regimedramatically affect the circuit performance.

behavior can cause problems for traditional nonlinear analysis
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The approach presented is intended to help the understandt w. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannihy;

ing

of nonlinear circuit behavior rather than to serve as a Merical Recipes in FORTRANNd ed. ~ Cambridge, U.K.. Cambridge
Univ. Press, 1992, ch. 16, pp. 701-744.

deSign tool. However, the authors feel f[hat n_onlinear tim@_rg] W. R. Curtice and M. Ettenberg, “A nonlinear GaAs FET model for
domain analysis can be useful for designing microwave oscil- use in the design of output circuits for power amplifielEE Trans.

lators, since it can predict regions of potential multicycle (

Microwave Theory Techvol. 33, pp. 1383-1394, Aug. 1985.
50] T.-Y. Li and J. A. Yorke, “Period three implies chaosimer. Math.

chaotic) oscillations for a given oscillator topology. It can als Monthly, pp. 985-992, 1982.
give insight as to how the embedding circuit can be changéd] P. Holmes, “Nonlinear oscillations and the smale horseshoe map,” in

to avoid this type of behavior within a given injection-locking

Chaos and Fractals: The Mathematics Behind the Computer Graphics
(Amer. Math. Soc.), ifProc. Symp. Applied MathProvidence, RI, 1989,

frequency range. Since this is a time-domain representation of vol. 39, pp. 25-39.
the circuit, it could be integrated with finite-difference time{22] J. Guckenheimer and P. HolmeNpnlinear Oscillations, Dynamical

Systems, and Bifurcations of Veector FieldNew York: Springer-Verlag,

domain codes for a more complete electromagnetic analysis jggs
of high-frequency (HF) oscillators. [23] B. A. Huberman and A. B. Zisook, “Power spectrum of strange

attractors,”Phys. Rev. Lettvol. 46, pp. 626-628, 1981.
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