
1050 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 7, JULY 1997

Nonlinear Time-Domain Analysis of Injection-
Locked Microwave MESFET Oscillators

Jonathan Dixon,Student Member, IEEE,Elizabeth Bradley,Member, IEEE, and Zoya B. Popovi´c, Member, IEEE

Abstract—In this paper, injection-locked MESFET oscillators
are analyzed using several numerical models. The injection-
locking behavior of the van der Pol equation and of a more
complex representation using the Curtice–Cubic MESFET model
are investigated. Analysis and experimental results are compared
for an NE71083 transistor oscillator operating at 0.5 GHz. The
deficiencies of using a van der Pol oscillator model are pointed
out. Time-domain results from the complex model exhibiting mul-
ticycle and apparently chaotic behaviors are also examined, and
point to problems with common nonlinear simulation techniques
for these circuits.

Index Terms—Chaos, injection-locking, nonlinear modeling,
transistor oscillator.

I. INTRODUCTION

T HE USE of linear models to predict oscillator behavior
suffers from many limitations, which make it difficult

to accurately predict operating frequency and power. As at-
tempts are made to improve oscillator performance by setting
operating points farther into nonlinear regimes, the ability
to model these effects becomes critical, since saturation can
influence frequency of operation, power output, and efficiency.
Designing better oscillators requires a more complete under-
standing of how the nonlinear aspects of the oscillator affect
its operation.

In addition, interest in nonlinear coupling behavior has
increased due to the recent advances in free-space power
combining [1]–[8] and phase-shifterless beam scanning [9],
[10]. Because these types of combiners involve a large num-
ber of coupled oscillators, an understanding of the coupling
mechanisms is critical to improving the phase noise, tuning,
and locking ability.

As a starting point for understanding coupling behavior in
microwave oscillators, the authors have chosen to examine the
source–load oscillator topology, shown in Fig. 1. This topol-
ogy is simple enough that the analysis does not depend upon
too many components, but is still complex enough to show the
different behaviors common in microwave oscillators.

In the past, the primary approaches to nonlinear oscillator
modeling have been harmonic-balance simulations [11] and
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Fig. 1. Source–load oscillator topology with the circuit nodes numbered.
Node 2 is the source of the transistor, which is coupled to a tank circuit and
drive voltage.

the Volterra series method [12]. In both of these, the cal-
culations are performed in the frequency domain, assuming
constant or slowly varying amplitudes, and the results are then
converted back into the time domain. The van der Pol equation
[13] has also been used to model time-domain characteristics
of coupled microwave oscillators, but there has been little work
on time-domain modeling of injection-locked oscillators using
more realistic models.

In this paper, results from two numerical models are
compared—the van der Pol oscillator equation and a more
realistic representation using a more complicated transistor
model—with experimental results. While this particular
analysis uses the Curtice–Cubic transistor model, it can be
extended to a wide variety of other nonlinear transistor models.
The implications of the authors’ time-domain analysis on
traditional microwave oscillator modeling and design are also
examined.

II. NUMERICAL METHODOLOGY FORANALYSIS

OF INJECTION-LOCKED OSCILLATOR MODELS

One common way of characterizing dynamic behavior of
nonlinear systems is the parametric sweep, where several
system parameters are varied and the behavior of the re-
sulting system is examined [14] and typically presented as a
parameter-space portrait. In this study of the injection-locking
characteristics, the parameters varied are the magnitude and
frequency of the injected signal. For this paper’s numerical
experiments, this sweep in drive frequency and magnitude is
implemented by stepping loops within the main program.

Automation of the sweep process requires a method that
allows the computer to determine whether the oscillator is
locked to the injected signal. One way of judging whether a
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Fig. 2. Experimental setup used for testing the authors’ model. Slight modification from the circuit in Fig. 1 allows the circuit to be tested using standard
microwave equipment. The sweeper is used as the injection-locking source.

system is locked to a drive signal is to perform a Poincaré
section [15] of the state variables with respect to that signal.
If the points of the Poincaré section repeat with a period,
then the oscillator is locked as an-cycle to the drive signal.

The number of state variables depends on the complexity of
the model. Since, in modeling injection-locked oscillators, the
important feature is how the output responds to the locking
signal, the output voltage and its derivative are chosen as
the state variables to be examined. In addition, the Poincaré
section is taken every time the drive voltage crosses 0 V going
from negative to positive. This usually occurs between two
simulation points, so linear interpolation is used to estimate
the precise location of the sectioned points.

Because the steady-state dynamics of the oscillator are what
is of interest in this sweep, the simulation must continue long
enough to allow the initial transient response to sufficiently
decay before sectioning begins. The necessary delay strongly
depends on the system being studied.

Once the transient response has decayed, the location of the
sectioned point is compared with the three previous sectioned
points using an averaged norm [16]. The step for those
previous sectioned points is equal to the number of the
periodicity being checked, so that the error for an-cycle test
at the th sectioning is

where is the voltage across the tank circuit at theth
sectioning and the dots over the variables represent derivatives
with respect to time.

This error is accumulated and then averaged to give the error
per section for each periodicity. A discrimination level of 0.01
is chosen to signify a locked condition. This paper’s investiga-
tion is limited to discriminating oscillations with periodicity of
1 through 7. The authors’ feel that investigating higher period
oscillations would do little to further understanding of system
dynamics and enable improvements in design techniques, so
that the added time and storage requirements that classifying
larger periodicities would have entailed are not appropriate.

In addition, as discussed below in Section VI, it is difficult
to truly establish the presence of chaotic signals. The large
additional computational demands of automatically discerning

TABLE I
COMPONENT VALUES FOR MEASURED CIRCUIT

modes which might be chaotic are not necessary for the
purposes here.

III. EXPERIMENTAL RESULTS

The oscillator circuit is a source–load oscillator circuit built
around the NE71083 MESFET, surface-mounted inductors,
and variable capacitors. This circuit is tested using the setup
shown in Fig. 2. The component values used are shown in
Table I.

The biasing is provided through lumped inductors to the
gate and drain of the transistor, and the source is connected to
ground by a lumped inductor and a variable capacitor (which
provides some tuning ability). For the source load, a coaxial
connection to a 3-dB power splitter allows both the sweeper
and the spectrum analyzer to be connected to the circuit. The
sweeper is the injection-locking source for the circuit, and
the analyzer is used to examine the output waveforms. The
circuit was biased at V and mA, which is
roughly the bias condition at which the manufacturer’s model
data had been taken. The free-running oscillation was at 0.45
GHz with an amplitude of 0.1 mV.

The results of the experimental sweep of the injection-
locking parameters are shown in Fig. 3. The primary features
of this sweep are a main lobe, shown in black in the figure,
where the oscillator locks with period one. This main lobe is
significantly asymmetric. In addition, there is another lobe for
higher drive frequencies and amplitudes, which demonstrates
locking with a variety of different periods.

Output spectra for some injected signals show the type of
subharmonics expected from multicycle oscillators; they also
show the broad spectra that are often seen in chaotic systems,
as can be seen in Figs. 4 and 5, respectively. The apparently
chaotic spectra are seen in a variety of locations, especially
where there are transitions from unlocked to locked states.
The implications of the existence of multicycle and chaotic
oscillations are discussed in the section below on time-domain
results.
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Fig. 3. Experimental sweep results. The free-running oscillation had an amplitude of 0.1 mV. The horizontal axis is the injection-locking signal amplitude.

Fig. 4. Measured spectrum showing subharmonics indicative of multicycle
(six-cycle) behavior. The injection signal is 0.9 V at 350 MHz.

IV. VAN DER POL OSCILLATOR MODEL

The van der Pol oscillator equation [17] is widely used to
model nonlinear oscillator behavior. While this equation does
not physically model the dynamics of MESFET oscillators,
it is often used as a general model for the output voltage of
these circuits.

For this paper, the authors used a generalized form of the
equation, specifically

(1)

The equation parameters are chosen to be , ,
and . The swept parameters are and . These
choices make the free-running characteristics of the oscillator
model comparable to those from both the circuit described
above and the more complex model presented later. Equation
(1) is implemented in Fortran and numerically solved using
an adaptive fourth-order Runge–Kutta ordinary differential-
equation solver [18].

The results of the sweep are shown in the parameter-space
portrait in Fig. 6. There is a single, roughly symmetric lobe
of one-cycle behavior and a few scattered areas of multicycle
behavior. As these are all isolated points, it is believed that
they represent spurious behavior that would be eliminated by

Fig. 5. Measured spectrum showing what is believed to be chaotic behavior.
The injection signal is 2.2 V at 550 MHz.

lengthening the simulation and allowing the error to increase
to be above the cutoff point.

The main problem with these results is that the lobe of
multicycle behavior seen in the experimental results does not
appear in this model; moreover, the main lobe does not reflect
the asymmetry of the experimental results.

It was expected that the van der Pol results would sig-
nificantly differ from the experimental results, because the
assumption that the MESFET can be treated as a negative
resistance (as is roughly done for the van der Pol equation) is
not accurate for MESFET oscillators in general. This equation
adequately models some forms of common-source geometries,
where the gate–drain capacitances are high enough to cause
the gate–drain voltage to tend to be zero. The approximation
is much less appropriate for other topologies, where the
capacitances are much smaller between the two ports. In the
source–load geometry, the reduction to a nonlinear negative
resistance is too much of a simplification, as it does not take
into account the nonlinear reactance.

V. SOURCE–LOAD OSCILLATOR MODEL

To model the circuit more realistically requires a more
accurate nonlinear transistor model. Because of its wide-
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Fig. 6. Van der Pol locking sweep. The free-running peak-to-peak amplitude of the oscillation is 0.568 V.

spread use and the availability of model parameters, the
Curtice–Cubic model [19] is employed for the drain–source
current of the MESFET. The gate–source and gate–drain
junctions are modeled by voltage-dependent capacitances in
parallel with voltage-dependent resistances. This transistor
model is inserted into the topology of Fig. 1, and nodal
current analysis is used to derive a set of three coupled
differential/integral equations, the solutions of which are the
voltages at the three nodes in Fig. 1.

In order to avoid singularities in later mathematical ma-
nipulation, the voltage differences , , and , defined
by

are substituted into these coupled equations. Differentiating
the nodal equations with respect to time and grouping like
terms together yields the following system of second-order
differential equations:

(2)

where the dots above variables indicate derivatives with re-
spect to time, and , , and are defined by

Using standard linear algebraic techniques on the coeffi-
cients of the left-hand side (LHS) in order to separate the

second-order differential terms from each other results in the
following set of equations:

(3)

where

Equation (3) is implemented in Fortran using the same adap-
tive Runge–Kutta solver and parameter sweep program men-
tioned above.

For the simulations, parameter values were chosen to match
the NE71083 MESFET, as shown in Table II. The tank circuit
parameters are pF, and nH,
and the external inductors are nH and nH.
The biases are V and V, which gives
conditions very close to those where the Curtice–Cubic model
was made. With these choices, the free-running oscillation
is about 500 MHz, which is within 16% of the free-running
frequency of the physical circuit.

This circuit is simulated at 682 different combinations of
injection frequency and magnitude, with a precision level of
10 , to an end time of 160 ns. The sectioning starts after
40 ns to allow the initial transients to settle. The entire sweep
takes approximately 170 h of computing time on HP-700 series
workstations.

The results from the simulation are shown in Fig. 7.
Whereas the behavior of the van der Pol model was too
simple, the Curtice–Cubic behavior appears to be somewhat
too complex. The main lobe shows the same asymmetry seen
in the experiment, and the plot also shows the type of higher
period orbits which appear in the experiment. Two other lobes
also appear. These, together with the main lobe, correspond
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Fig. 7. Curtice model injection locking sweep. The free-running peak-to-peak amplitude of the oscillation is 0.449 V.

TABLE II
CURTICE–CUBIC MODEL PARAMETERS FOR THENE710 SERIES, AS

PROVIDED BY THE MANUFACTURER. THE MODEL PARAMETERS ARE

BASED ON MEASUREMENTS ATVds = 3 V AND Ids = 30 MA

to three separate areas where the injection amplitude and
frequency combine to cause locking behavior. In addition,
there are a number of other isolated areas that show some
degree of locking.

The primary lobe is fairly narrow and consists of one-cycle
oscillations. This is the most commonly used injection-locking
regime, because the oscillator will lock completely to the
injected signal. The upper secondary lobe shows locking as
a three-cycle oscillator, with bifurcations at higher injection
amplitudes to six-cycle oscillations (e.g., near 0.68 GHz and
0.75 or 1.75 V). Further bifurcations to 12-cycle oscillations
probably exist, but the authors’ program does not identify
these. This upper lobe, at low drive levels, starts at a fre-
quency of about 3/2 the free-running frequency and decreases
in frequency as the drive voltage is increased. The lower
secondary lobe initially looks quite similar to the main lobe,
but bifurcates to two-cycle oscillation as the drive voltage
increases. This lobe is at roughly 2/3 of the free-running
frequency; unlike the upper lobe, it does not show a frequency

shift with increased drive voltage. In the region where the drive
voltage is between 1.0 and 1.75 V and the drive frequency is
between 0.40 and 0.48 GHz, the behavior is seen to be quite
erratic, with many different locking modes present. This is
typical of regions where chaotic behavior might be present.
Based on the experimental results, chaotic behavior is expected
to be present along the locking boundaries, but experiments
were not performed to confirm or deny this expectation.

VI. TIME-DOMAIN RESULTS

As described in the previous section, the Curtice–Cubic
model describes much of the actual steady-state dynamics of
the locked system. The next stage of the model verification
process is to examine results in the time domain for a selection
of injected signals that show interesting and representative
behavior.

At the first such parameter-space setting (0.54 GHz, 1.0 V),
the signal converges to a period-one limit cycle, as shown
in Figs. 8–10. When the frequency is raised to 0.73 GHz,
this one-cycle bifurcates to a three-cycle. Figs. 11–13 show
these results. The frequency spectrum in Fig. 13 is similar
to that shown experimentally in Fig. 4 with respect to the
prominent subharmonics, although with a different periodicity.
The thickness of the lines in Fig. 12 indicates that the system
has not completely settled, and could be eliminated if the
simulation time was increased significantly.

If, on the other hand, the frequency is lowered to 0.46
GHz and the amplitude is raised to 1.4 V, the behavior
is apparently chaotic, as seen in Figs. 14–16. The results
in Figs. 14–16 can only tentatively be classified as chaos
because there is no reasonable way toprove the existence
of chaos in a system of this complexity. That chaos should
be present is expected as an extension of [20], but that
paper only strictly applies to one-dimensional (1-D) discrete
mappings. For more complicated systems, methods like those
of Melnikov [21], [22] can sometimes be used, but these are
based on formally establishing the presence of horseshoes
(stretching and folding) in the phase-space flow, a difficult
task in high-dimensional systems, and an all-but-impossible
one in experimental systems.
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Fig. 8. One-cycle oscillation time domain. The oscillator is injected with a
0.54 GHz 1.0 V signal.

Fig. 9. One-cycle oscillation phase space. This has the same injection signal
as in Fig. 8. The markers indicate the points of the Poincaré sectioning.

Fig. 10. One-cycle oscillation frequency domain. This again uses the same
parameters as in Fig. 8. The noise floor is due to discretization noise in the
fast Fourier transform (FFT).

As is apparent in Fig. 15, the phase-space attractor exhibits
some fractal structure.1 Fig. 16, viewed in comparison to
Figs. 10 and 13, shows the classic broad noise-like spectrum
that is also common in—and symptomatic of—chaotic systems
[23], and which is similar to the experimental results in Fig. 5.

1That is, it resembles a Cantor set in cross section.

Fig. 11. Three-cycle oscillation time domain. The injection signal is at 0.73
GHz and 1.0 V.

Fig. 12. Three-cycle oscillation phase space. The injection signal is as in
Fig. 11. The markers indicate the points of the Poincaré sectioning. The
thickness of the lines indicates that the system has not completely settled,
which could be eliminated with significantly longer execution times.

Fig. 13. Three-cycle oscillation frequency domain. The parameters are again
as in Fig. 11. The noise floor is roughly the same as Fig. 10. The power in
the fundamental frequency is much less than seen in Fig. 10.

The results shown here have several important implications,
both for techniques to be used in detecting these effects in labo-
ratory measurements and for the validity of assumptions made
in other modeling methods. The presence of the subharmonics
of multicycles and the frequency spreading for the apparently
chaotic oscillations in Figs. 13 and 16 provides a straightfor-
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Fig. 14. Apparent chaotic oscillation time domain. The injected signal is 1.4
V at 0.46 GHz.

Fig. 15. Apparent chaotic oscillation, Poincaré section. The injected signal
is the same as for Fig. 14. The fractal (Cantor set) characteristics of the section
strongly suggests the system is chaotic.

Fig. 16. Apparent chaotic oscillation frequency domain. The injected signal
is as in Fig. 14. The spectrum is spread much rougher, and has a higher
background level than Figs. 10 and 13. This is a feature common in chaotic
systems.

ward method for detecting these behaviors using a spectrum
analyzer. Direct detection of these types of oscillations in the
time domain is difficult at microwave frequencies.

The frequency-domain plots show that the power at the
locking frequency is significantly decreased when the circuit
is operating in multicycle and apparently chaotic regimes,

since more power is lost to frequencies other than the locking
frequency. This means that single-cycle oscillators should be
used when the object is to maximize the power at the injected
frequency. It is not presently clear whether the presence of
these subharmonics can be exploited in some useful manner.

The significant subharmonics seen in Figs. 4 and 13 and the
broad spectra of Figs. 5 and 16, challenge the assumption that
the amplitude of the signal is varying slowly with respect to
the carrier frequency. This calls into question whether forms
of nonlinear analysis which use this assumption, as in [4], can
accurately model the dynamics of transistor oscillators. These
frequency characteristics also cause problems for techniques
that employ a finite sum of frequency components, such as har-
monic balance and Volterra series analysis. The subharmonics
from the oscillators would require the use of subharmonics
in these analyses, but there is no way to knowa priori what
periodicity to expect. The broad spectrum of the chaotic signal
would require an infinite number of frequencies to be properly
simulated, so any of these methods would fail.

VII. CONCLUSION

A time-domain analysis of injection-locked microwave tran-
sistor oscillators using a nonlinear device model is presented.
The results are compared to an analysis using a simpler van
der Pol oscillator model and to an experimental model. It is
concluded that the van der Pol model does not accurately
characterize a general microwave transistor oscillator, since
it does not take into account the nonlinear reactive part of
the device impedance, but treats the transistor as a nonlinear
negative resistance. However, it is possible to choose the
circuit elements and oscillator topology such that the van der
Pol model will model certain oscillator behaviors. The analysis
using a Curtice–Cubic transistor model qualitatively predicts
the behavior of a 0.5-GHz experimental model.

Injection-locked oscillators are analyzed by using the
Poincaŕe section in an automated numerical procedure. It
is shown that commonly used nonlinear dynamics techniques,
such as the phase-space portrait, can provide a useful tool for
understanding microwave oscillators.

The van der Pol and Curtice–Cubic models give signifi-
cantly different results when the injection-locked frequency
is plotted against injection-locking signal power. The van der
Pol model yields a symmetrical plot around the free-running
frequency, which is shown not to be the case in realistic
experimental oscillators. The asymmetries in the injection-
locking plane are better predicted using a nonlinear transistor
model.

Both numerical and experimental results are presented,
showing multicycle behavior, as well as what is believed to be
chaotic behavior, in a very simple microwave oscillator. These
behaviors can be identified by the subharmonics or spectral
broadness seen in spectrum plots. The existence of such
behavior can cause problems for traditional nonlinear analysis
techniques, which assume a finite number of harmonics or
slowly varying time-domain amplitudes and phases. This can
dramatically affect the circuit performance.
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The approach presented is intended to help the understand-
ing of nonlinear circuit behavior rather than to serve as a
design tool. However, the authors feel that nonlinear time-
domain analysis can be useful for designing microwave oscil-
lators, since it can predict regions of potential multicycle (or
chaotic) oscillations for a given oscillator topology. It can also
give insight as to how the embedding circuit can be changed
to avoid this type of behavior within a given injection-locking
frequency range. Since this is a time-domain representation of
the circuit, it could be integrated with finite-difference time-
domain codes for a more complete electromagnetic analysis
of high-frequency (HF) oscillators.
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